聊城西门子代理商
SIEMENS 上海湘谷自动化科技有限公司
我公司经营西门子全新原装现货PLC;S7-200S7-300 S7-400 S7-1200 触摸屏,变频器,6FC,6SNS120 V10 V60 V80伺服数控备件:原装进口电机(1LA7、1LG4、1LA9、1LE1),国产电机(1LG0,1LE0)大型电机(1LA8,1LA4,1PQ8)伺服电机(1PH,1PM,1FT,1FK,1FS)西门子保内全新原装产品‘质保一年。一年内因产品质量问题免费更换新产品;不收取任何费。欢迎致电咨询。
上海湘谷公司优势产品; PLC 、触摸屏、变频器、电缆及通讯卡、数控系统、网络接头、伺服驱动、 凡在公司采购西门子产品,均可质保一年、假一罚十、以满足客户的需求为宗旨 、 以诚为本、精益求精
变频器生产厂商如何根据用户高可靠性的要求制造出性能稳定,运行可靠,价格合理的产品满足市场需求也是这个产品或这个产业能否持续发展的关键。 具体要求有下列几项: ①变频器的电路结构应力求简单可靠 a.可以选择采用真正的高一高(交-直-交)直接变频主电路。 b.功率单元愈少愈好,尽量避免功率单元和电力电子器件的串联。因为串联系统的可靠度减小(N次幂)、而串联系统的失效率增大(N倍)。虽然并联系统有利于可靠性的提高,减少失效率,增长装置的平均寿命,但是目前电力电子器件的电流可达3KA--4KA水平,所以不并联也可以使用了,目前主要问题是电力电子器件的耐压水平进一步提高后,电力电子器件就可以不串不并,便会大大提高变频器的可靠性。 ②变频器中电力电子模块的选用--耐压和电流额定值必须具有充分的裕度。外国某变频器制造商曾说:“功率模块充分降额使用可以换来装置的可靠性”。反之,所选功率模块参数接近计算值,没有一定的余量,存在侥幸心理,结果会造成变频器功率模块烧毁。 究其原因不外两方面: (1)功率模块所选耐压和电流额定太小。 (2)所购进的功率模块是否正品?是否**厂商产品?目前国内IGBT功率模块还无法满足高压变频器的要求,但从国外购进IGBT,其质量又不尽如人意。其一,根本不可能购到**品(**)和一等品(正品),大多属于有某1-2个指标不合格而被筛选下来的产品。其二,国内一般不具备严格的动态测试设备。那些未经挑选的功率模块,没有通过电热老化处理。不合格的功率模块装到整机上,发生故障甚至烧毁也在情理之中。 ③变频器中电力电子模块应有充分的通风量和冷却措施。保证在允许结温下运行,离允许结温愈低,变流装置的可靠性愈高。 功率模块冷却方式可以风冷,水冷以及先进的热管技术。不论何种方式,需将整流变压器和变流装置损耗产生的热量带走,保持允许的结温。 根据装置的容量,损耗大小,制造商提出必须的通风量。 [注]1)、新鲜冷空气,从变频器柜底部送入,由箱体**部排出。空气逆方向流过(自上而下)是不允许的。 2)、变频器柜下部进风处应设置过滤网,防灰尘和油雾等杂质进入柜内。 保证变频器必需的通风量(米3/分或CFM)目的是为了散热冷却,使功率模块正常工作,不致于**过允许结温。另外有些工矿地处沿海、江和湖泊或是盐雾,潮湿和腐蚀气体环境,还应有防潮,防腐措施,例如,为了防止停役几天或几周后,变频器柜内受潮,绝缘下降,影响顺利开车,变频器柜内设有低压电加热器(电热丝加热,红外线电加热或远红外线电加热装置)。当变频器停役时,自动地将电加热器投入工作,确保箱内去湿和干燥。 ④变频器必须制作精良,连接牢靠 具体要求: a.连接件要少,尽量避免插件方式(易松动,不牢靠),以焊接代替接线端子,尽量少用电位器。 b.采用大面积整块印刷电路板。 c.采用无接线*特结构的电力电子功率模块,提高产品的可靠性。 d.合理布局。例如:整流变压器与变流装置之间的隔热以及防电磁干扰措施;高压与低压之间的光电隔离和采用光缆传输。 ⑤变频器出厂前应进行严格地带载试验和48-72小时性能考核。一台变频器由大量电气元器件组装而成。除了选用**和正品的符合技术要求的器件,并经过测试筛选,清除不可靠的元器件外,出厂前必须使变频器带电运行考验。一般要进行48-72小时连续运行考验,要求特别可靠的场合进行7昼夜(24*7=168小时)考验,其考核条件为: a.带负载试验(不是空载或轻载) b.具备实际应用场合的温度和相对湿度。 凡经试验检测符合技术规范,并通过长时间考核的变频器出厂投运以后,都会有很高的可靠性。 1.根据生产机器负荷要求和电动机规格参数,正确选择变频器形式及容量匹配 如果单有变频器本体的高可靠性,而变频器选型和容量匹配不适当,组成的变频调速系统也不可能达到很高的可靠性,甚至无法运转,为此,我们必须: 首先根据负荷性质,正确选用变频器类型。总的原则就是什么性质负载特性配什么特性的变频器。 (1)恒转矩生产设备--在调速范围内,负载力矩基本恒定不变。应选具有恒转矩性能的变频器。其过载能力为150%额定电流维持1分钟。 (2)平方转矩生产设备--在调速范围内,负荷力矩与转速的平方成正比,即M∝n2,离心式风机,水泵为它的典型代表。具有M∝n2特性的变频器其过载能力较小,110%-120%额定电流过载1分钟, (3)恒功率负荷生产设备-在调速范围内,转速低力矩大;转速高力矩小,即M?NC(常数)。典型设备如机床及卷绕机构。 当然有些变频器厂商的产品不分恒转矩和平方转矩负载,是通用型的。两种负荷都可选用。恒功率负荷特性是依靠V/F比来实现,并没有恒功率性能的变频器。 归纳起来,选用变频器型号应与负载力矩相适应。恒转矩特性的变频器可以用于风机水泵负载,反过来,平方转矩特性的变频器绝不能用于恒转矩特性的负载。 其次根据电动机**额定参数来匹配变频器容量 通常匹配原则:PEINV≥PEmotor(kW) IEINV≥1.1-1.2IEmotor(A) 重视电流这个参数,因为电力电子模块的功耗是IX△U(电流与管压降之积),与变频器的输出电压大小并没有直接关系。而变频器的输出功率是它与输出电压、输出电流之积成正比。实践中往往发生输出电流已**过,但输出功率并未**过,结果造成电力电子功率模块烧毁的故障。因此,应主要考虑电流指标。 变频调速主电路结构应用形式多种多样,如何选用匹配呢? (1)一对一单电动机变频调速方式。 因为变频器具有软起动(低压低频起动--逐步升压升频升速),不存在冲击电流现象。 因此选用IEINV≥(1.1-1.2)IEmotor 按确定的IEINV电流值,查产品目录,可找到合适的变频器 (2)多电动机变频调速方式(多电机共用一台大变频器) 比如,有N台相同参数的电动机,同期起动电动机为K台,较大电流状况是当(N-K)台电机已起动完毕,处于高频高压运行之下,最后K台电机直接起动(直接起动电流很大,异步电机5-7倍,永磁同步电机10-14倍,设为IQmotor)。 选用变频器的充分且必要的条件是: a)IEINVa≥(1.1-1.2)[N?IEmotor] b)IEINVb≥(1.1-1.2)[(N-K)?IEmotor+K?IQmotor] 在IEINV和IEINV选择电流大的数值,再查产品目录,确定变频器的规格。 (3)共用直流电源的多逆变器多电机变频调速方式(逆变器与电机仍属于1对1方式) 随着变频技术的进步,出现了小变频器多电机方案(实质类同1对1变频调速)和共用直流电源方案(多个逆变器共用一套直流电源,一个逆变器驱动一台电机。) 共用直流电源电流计算公式: IEcon≥(1.1-1.2)[IEmotor1+……+IEmotorn]或(1.1-1.2)?N?IEmotor 2.变频器应有良好的运行环境和维护保养 尽管选用了高质量的变频器,并且变频驱动系统匹配也正确,如果希望获得长周期安全稳定运行,还应有一个良好运行环境以及做好设备维护保养。 (1)变频器应有的运行环境 几乎所有的变频器制造厂商都说,可以在0-40℃温度,相对湿度RH≤95%(不结露)环境下工作。但是,为了变频器更有利的运行,希望变频器置于空气调节的环境里,温度控制在25±3℃,相对湿度RH≤70%-75%。实践证明,置于空调环境下变频器的故障机率要比没有空调环境变频器少得多,系统的可靠性增加很多。 另外,变频器的空调较好采用独立**空调,避免使用车间空调或中央空调,因为中央空调、车间空间会把空气中的油污,灰尘和腐蚀性气体进入变频器柜内,引起变频器电力电子、微电子(IC集成电路)元器件的损坏。 (2)加强每天的巡检及定期维修。 ①日常运行巡检项目,主要检查有无异常现象。例如冷却系统异常、过热、变色、异味、异声和异常振动。定时抄录变频器的输入和输出的电气参数是否正常。 ②定期维修--变频器停役后进行断电维修。除了清扫和紧固接线端子外,重点维修项目(即变频器薄弱环节)有: a.电介电容器是否变形和渗漏电介液;是否腐蚀印刷电路板,造成绝缘电阻下降,引起IC软故障。国外厂商规定3-5年运行后,应将电介电容器强制更换。 b.冷却风扇及过滤网清理。2-3年运行后,冷却风扇也应强制更换。 c.印刷电路板是否腐蚀损坏。较好进行喷膜处理,可以抗腐蚀性,增强绝缘性能。我们公司某化纤厂对安川变频器印板进行清洗,燥干和喷膜处理,修复了几十台损坏的变频器,并在东芝变频器十多台上推广这个喷膜处理技术,取得良好的效果--修复后再也没有发生类似故障。当然在进行喷膜处理时,特别要注意保护好各类接插件口,不要让膜层保护剂喷入,以免引起接触不良。具体做法,接插件口可先用遮盖剂或塑料胶带遮后再喷膜。
变频器是工业调速传动领域中应用较为广泛的设备, 由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载。变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。因此,以变频器为代表的电力电子装置是公用电网中较主要的谐波源之一,电力电子装置所产生的谐波污染已成为阻碍电力电子技术自身发展的重大障碍。相关的定义
1.2 谐波治理的有关标准
变频器谐波治理应注意下面几个标准, 抗干扰标准:EN50082-1、-2,EN61800-3:辐射标准:EN5008l-1、-2,EN61800-3。特别是IECl0003、IECl800-3(EN61800-3)、IEC555(EN60555)和IEEE519-1992。
普通的抗干扰标准EN50081和EN50082以及针对变频器的标准EN61800(1ECl800-3)定义了设备在不同的环境中运行时的辐射及抗干扰的水平。上述标准定义了在不同环境条件下的可接受辐射等级:L级,*限制。适用于在不受干扰的环境下使用变频器的用户和自己处理辐射限制的用户。 H级,根据EN61800-3确定的限制,**环境:有限制分布,和*二环境。作为选件RFI滤波器,配置RFI滤波器可以使变频器达到商业级,通常用于非工业的环境。有关谐波治理的EMC标准示意图如表1所示。
治理谐波问题,抑制辐射干扰和供电系统干扰,可采取 屏蔽,隔离,接地及滤波等技术手段。①使用无源滤波器或有源滤波器: ②增加变压器的容量,减少回路的阻抗及切断 传输线路法; ③使用无谐波污染的绿色变频器。
2.1 使用无源滤波器或有源滤波器
使用无源滤波器其主要是改变在特殊频率下电源的阻抗,适用于稳定、不改变的系统。而使用有源滤波器主要是用于补偿非线性负载。
传统的方式多选用无源滤波器,无源滤波器出现较早,因其结构简单、投资少、运行可靠性较高以及运行费用较低,至今仍是谐波抑制的主要手段。LC滤波器是传统的无源谐波抑制装置,它由滤波电容器、电抗器和电阻器适当组合而成,与谐波源并联,除具有滤波作用外,还有无功补偿的作用。这种装置存在一些较难克服的缺点,主要是容易过载,在过载时会被烧损,可能造成功率因数过引、偿而被罚款;另外,无源滤波器不能受控,因此随着时间的推移,配件老化或电网负载的变动,会使谐振频率发生改变,滤波效果下降。更重要的是无源滤波器只能过滤一种谐波成份(如有的滤波器只能滤除三次谐波),如果过滤不同的谐波频率,则要分别用不同的滤波器,增加设备投资。
国内外有多种有源滤波器,这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响。有源电力滤波器(APF)理论在20世纪60年代形成,后来着大中功率全控型半导体器件的成熟,脉冲宽度调制(PWM)控制技术的进步以及基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,有源电力滤波器得以迅速发展。其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流频谱, 以抵消原线路谐波源所产生的谐波,从而使电网电流只含有基波分量。其中核心部分是谐波电流发生器与控制系统,即其工作靠数字信号处理(DSP)技术控制快速绝缘双较晶体管(1GBT)来完成。
目前,在具体的谐波治理方面, 出现了无源滤波器(LC滤波器)与有源滤波器互补混合使用的方式,充分发挥LC滤波器结构简单、易实现、成本低,有源电力滤波器补偿性能好的优点,克服有源电力滤波器容量大、成本高的缺点,两者结合使用,从而使整个系统获得良好的性能。
2.2 减少回路的阻抗及切断传输线路法
谐波产生的根本原因是由于使用了非线性负载,因此,解决的根本办法是把产生谐波的负载的供电线路和对谐波敏感的负载的供电线路分开(如图2所示)。由于非线性负载引起的畸变电流在电缆的阻抗上产生一个畸变电压降,而合成的畸变电压波形加到与此同*路上所接的其它负载,引起谐波电流在其**过(如图3所示)。因此,减少谐波危害的措施也可从加大电缆截面积,减少回路的阻抗方式来实现。目前,国内较多采用提高变压器容量,增大电缆截面积,特别是加大中性线电缆截面,以及选用整定值较大的断路器、熔断器等保护元件等办法,但此种方式不能从根本上消除谐波,反而降低了保护特性与功能,又加大了投资,增加供电系统的隐患。从图2中可知,可以将线性负载与非线性负载从同一电源
2.3 使用无谐波污染的绿色变频器
绿色变频器的品质标准是:输入和输出电流都是正弦波,输入功率因数可控,带任何负载时都能使功率因数为1,可获得工频上下任意可控的输出频率。变频器内置的交流电抗器,它能很好的抑制谐波,同时可以保护整流桥不受电源电压瞬间尖波的影响,实践表明,不带电抗器的谐波电流明显**带电抗器产生的谐波电流。为了减少谐波污染造成的干扰,在变频器的输出回路安装噪声滤波器。并且在变频器允许的情况,降低变频器的载波频率。另外,在大功率变频器中,通常使用12脉冲或18脉冲整流,这样在电源中, 通过消除较低次谐波来减少谐波含量。例如12脉冲,较低的谐波是11次、13次、23次、25次谐波。依次类推,对于18脉冲,较低的谐波是17次和19次谐波。
变频器中应用的低谐波技术可,归纳如下:①逆变单元的并联多重化,采用2个或多个逆变单元并联,通过波形叠加抵消谐波分量。②整流电路的多重化,在PWM变频器中采用121脉冲、18脉冲或者24脉冲的整流,以减少谐波。③逆变单元的串联多重化,采用30脉冲的串联逆变单元多重化线路,其谐波可减少到很小。 ④ 采用新的变频调制方法,如电压矢量的菱形调制等。目前,许多变频器制造厂商已非常重视谐波问题,在设计时已从技术手段上保证了变频器的绿色化,从而在根本上解决谐波问题。
3结论
综上所述,可以清楚地了解谐波产生的原因,在具体治理上可采用无源滤波器、有源滤波器,减少回路阻抗,切断谐波传输路径及开发使用无谐波污染的绿色变频器等方法,将变频器产生的谐波控制在较小范围内,达到科学合理用电,抑制电网污染,提高电源质量。
1.1 什么是谐波
谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中, 由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载, 出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。谐波定义示意图如图1所示。
2 谐波的治理措施
接口点(PCC)就开始分别的电路供电,这样可以使由非线性负载产生的畸变电压不会传导到线性负载上去。这是目前治理谐波问题较为理想的解决方案。
聊城西门子代理商